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Abstract. The cyclic Lotka-Volterra model in a D-dimensional regular lattice is considered. Entropy pro-
duction of its “nucleus growth” mode is investigated by analyzing the time evolution of the family of
entropies Sq = (1 − ∑

i pq
i )/(q − 1), with q ∈ R. This family contains as particular case (q = 1) the usual

entropic form S1 = −∑
i pi ln pi. The rate of growth of the entropy Sq, for some q �= 1, is expected to

provide non-trivial information about certain complex systems. For the system here considered, it is shown,
both numerically and by means of analytical considerations, that a linear increase of entropy with time,
meaning finite asymptotic entropy rate, is achieved for the entropic index qc = 1− 1/D, as previously con-
jectured in the literature. However, although qc �= 1, this relation can be explained in terms of very simple
features not directly connected to the complexity of the dynamics. The relation between the characteristic
entropic index and lattice dimensionality is shown to be a consequence of the fact that the system soon
approaches a steady regime where the nucleus radius grows linearly with time.

PACS. 05.10.Ln Monte Carlo methods – 05.65.+b Self-organized systems – 05.45.-a Nonlinear dynamics
and nonlinear dynamical systems

1 Introduction

Over one decade ago, Tsallis proposed an entropic form
as a starting point for a possible generalization of
Boltzmann-Gibbs statistics [1] (see also [2] for a review
on the subject). The generalized entropy has the form

Sq = k
1 −

∫

dx [ρ(x)]q

q − 1
, with q ∈ R, (1)

where k is a positive constant and ρ a normalized
probability density. The usual Boltzmann-Gibbs-Shannon
(BGS) entropy is recovered when q = 1 [S1 =
−k

∫
dxρ(x) ln ρ(x)].

Many experimental and numerical data are well ap-
proximated by q-exponentials (the probability distribu-
tions that maximize Sq under simple constraints), giving
indirect support to the applicability of the new en-
tropic measure to those systems. In the case of the high-
dimensional systems of interest in statistical physics, first-
principle derivations are still to be made. However, Tsallis’
entropy seems to be the appropriate one for certain low-
dimensional dynamical systems, such as the Feigenbaum
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attractor (edge of chaos), where the usual Lyapunov expo-
nent vanishes. In such case the characteristic value of q is
related to relevant properties of the dynamics and it can
be calculated by several paths, such as the multifractal
spectrum of the attractor [3] or the sensitivity to initial
conditions [4], or even, from a rigorous renormalization
group analysis [5]. Furthermore, this scenario has been
shown to be valid also for two-dimensional maps [6].

One of the properties of Sq that, for an appropriate
value of the entropic index, can make it in some cases
preferable to the standard entropy is the possibility of hav-
ing an asymptotic rate of entropy production with a non-
trivial value. Among the a priori infinite possible values
of q, the one leading to a linear increase of the entropy with
time, implying finite rate of entropy growth, is selected as
being qc, a value of q characteristic of the system. In fact,
this is another path for the determination of q that in the
case of unimodal maps [7] provides the same results as the
alternative methods mentioned above. Moreover, rigorous
analytical results have recently been found for such sys-
tems along this line [8]. The consistent results obtained
for the edge of chaos [3–5,7,8] have encouraged the study
of the temporal evolution of the Sq family (allowing to
determine qc) for diverse other dynamical systems [9–12].
The outcome qc �= 1 has usually been interpreted as a
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signal of nonextensivity or complexity. However, we will
see that this may be not always the case.

A particular system where the criterion of finite en-
tropy rate has been applied before is the cyclic Lotka-
Volterra model in a lattice (LLV) [12]. The LLV is one
of the descendants of the original versions constructed by
Lotka[13] and Volterra [14] to model autocatalytic chem-
ical reactions and the prey-predator dynamics, respec-
tively, and further adapted to many other situations from
active transport by proteins [15] to social processes [16].
The generalized LLV extends the original scheme to N
species Ai (i = 1, . . . ,N ) such that, cyclically, Ai is
“predator” of Ai−1 and simultaneously “prey” of Ai+1

(with AN+1 ≡ A1). Furthermore, the dynamics takes
place over a lattice, an ingredient that introduces new in-
teresting spatial features in comparison to the spatially
homogeneous mean-field description [17]. Its remarkable
traits, such as stationary states with spatial patterns [18]
and fractality [19], present it as a potential candidate for
the applicability of the entropies Sq. Precisely, the possi-
bility of extracting useful information from the Sq entropy
growth motivated its study along these lines. Previous nu-
merical studies of the LLV in one and two dimensions led
to conjecture the relation qc = 1 − 1/D for arbitrary lat-
tice dimensionality D [12]. Here we will go a step further.
After testing the conjecture in higher dimensions, we will
essay an interpretation of the connection between qc and
space dimensionality. We will see that qc �= 1 is not nec-
essarily related to the fractal properties of the dynamics,
contrarily to what occurs, for instance, in the logistic maps
at the edge of chaos [3–5,7,8].

The remaining of the paper is organized as follows. In
Section 2 we describe in detail the specific LLV model con-
sidered. In Section 3 the time behavior of the entropies Sq

associated to the LLV is studied. Section 4 exhibits the be-
havior of Sq under simple transformations of a probability
density leading to reanalyze in Section 5 the LLV dynam-
ics. Final remarks are presented in Section 6.

2 The generalized Lotka-Volterra model
in a lattice

Particles of the N different species Ai are localized at
the sites of a D-dimensional hypercubic lattice. Reactions
between particles of different species occur in bimolecular
autocatalytic steps following the scheme

Ai + Ai+1
ki−→ 2Ai+1, (2)

for i = 1, . . . ,N , being AN+1 ≡ A1, and where 0 ≤ ki ≤ 1
are the kinetic rates. No sites are empty but one of the
species could be interpreted as representing empty sites
in the lattice [12,19–21]. The dynamics is implemented
by means of a Monte Carlo (MC) algorithm following the
details in references [12,19,20]. Basically, at every micro-
scopic step: (i) one lattice site is randomly chosen; (ii) one
of its nearest neighbors is randomly chosen; (iii) if the first
site is Ai and the neighbor Ai+1, the first site changes to

t = 40 MCS t = 80 MCS

D = 2

D = 3

D = 4

t = 60 MCS

Fig. 1. Snapshots of the dynamics at different times indicated
on the top of the figure, for D = 2, 3 and 4. The initial con-
dition is a droplet, where all the species are present in equal
amounts and homogeneously distributed, over a background
of A3. In all cases the linear size of the lattice is L = 100
and the initial nucleus has λ = 6. For D > 2 the snapshots
correspond to sections parallel to one of the hypercube faces
and passing by the position of the center of the initial droplet.
Species are A1 (gray), A2 (black) and A3 (white).

Ai+1 with probability ki, in accord with scheme (2), oth-
erwise the site remains unchanged. Each MC step (MCS,
our unit of time) consists in N = LD microscopic steps
defined above, where L is the linear size of the lattice, so
that at each MCS all sites are revisited once in average.
Boundary conditions are periodic. In this paper we will
deal with three species only (N = 3) and we will focus on
the symmetric case where all the kinetic rates are equal
to one (k1 = k2 = k3 = 1). Moreover, we will restrict our
study to a particular mode of the dynamics, the “nucleus
growth” one [12,21]. The lattice is set with all the sites
filled with species A3 and a “droplet” or nucleus repre-
sented by a sublattice of small linear size λ (i.e., λ � L)
is introduced. The droplet contains equal amounts of par-
ticles of all the three species randomly and uniformly dis-
tributed.

As the system evolves according to the MC dynam-
ics, the droplet grows and acquires spontaneously a pecu-
liar structure [22]. Typical snapshots of the dynamics are
exhibited in Figure 1 for lattices in D = 2, 3 and 4 di-
mensions. Rings of alternating species develop, repeating
the sequence A1, A2, A3 towards the center of the droplet.
This pattern is possible since all the kinetic constants
are equal, then layers have almost the same radial ve-
locity. The thickness of the rings decreases towards the
center and thickness fluctuations destroy the most im-
mersed rings. This behavior has already been observed
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Fig. 2. Time evolution of the generalized entropies. Sq vs. t for various values of q and L = 148 in D = 3 (a), L = 60 in D = 4
(b). Sq/L vs. t/L for different lattice sizes L with: q = 2/3 when D = 3 (c), q = 3/4 when D = 4 (d). Symbols correspond to
a single representative numerical experiment. In all cases, the window of the partitioning is l = 4 and the initial droplet size
λ = 4.

before by Provata and Tsekouras for the two dimensional
case [21]. They also observed that the destroyed rings give
rise to a spatial organization of the species in domains
with fractal boundaries typical of the steady state in fully
occupied periodical lattices[12,19,21]. As the dimensional-
ity increases, spatial features remain qualitatively similar
but length scales become shorter. In the mean-field limit
D → ∞, homogeneity is expected. We are going to in-
spect immediately the evolution of spatial patterns from
the viewpoint of the generalized entropies Sq.

3 Temporal evolution of Sq in the LLV

Following previous work [12], we study the temporal evo-
lution of the entropies associated to one of the species,
e.g., A1. This particular choice does not substantially
affect the results. Nonoverlapping windows or sublat-
tices {Wi, 1 ≤ i ≤ M} of edge length l covering all the
lattice are considered. Thus the number of windows must
be M = (L/l)D, where l is a divisor of L. We associate
to each window i a probability pi(t) of being occupied
by species A1 at time t by counting the number of par-
ticles of that species n1(i, t). Then pi(t) = n1(i, t)/n1(t),
where n1(t) is the total number of particles A1 on the lat-
tice. The resulting set of probabilities is used to calculate
the entropy of the lattice, given by the discrete version of

equation (1) (where we have set k = 1)

Sq =

1 −
∑

i

pq
i

q − 1
. (3)

The LLV in D = 1 and 2 dimensions has already been
studied from this viewpoint before [12]. Now we will in-
vestigate higher dimensional lattices. Figure 2 shows the
generalized entropies as a function of time for diverse val-
ues of q, when the lattice has D = 3 and 4 dimensions. The
results shown in Figure 2 are not qualitatively affected by
changing l and/or L, as long as 1 ≤ l � L. They mainly
affect the saturation level, that for the uniform distribu-
tion is Ssat.

q = [(L/l)D(1−q) − 1]/(1 − q).
Notice in Figures 2a and b that as q increases the con-

cavity passes from positive to negative, before saturation,
which occurs when the droplet radius becomes of the order
of the linear size of the lattice. Entropies with q yielding
constant slope (null concavity) are represented as a func-
tion of time in Figures 2c and d. In all cases, constant
slope occurs at a value of the entropic index qc that as
function of D follows the law

qc � 1 − 1
D

, (4)



274 The European Physical Journal B

1/D
0.0 0.5 1.0

qc

0.0

0.5

1.0

Fig. 3. Characteristic value qc as a function of the lattice
dimensionality D. The dotted straight line corresponds to
qc = 1 − 1/D. Symbols are the result of numerical experi-
ments. Errors are of the order of symbol size. For D = 3 and 4:
qc was numerically determined from the data in Figure 2 as
the value of q yielding a linear slope. For D = 1 and 2, qc was
extracted from reference [12].

in agreement with the relation numerically found for D =
1 and 2, and conjectured for generic D previously [12]. See
Figure 3.

4 Behavior of Sq under simple
transformations of a probability density

The characteristic entropic index qc is related to the num-
ber of dimensions D though a simple law. This leads to
think that a simple mechanism could be behind. Since
we are dealing with an isotropic growth process, we will
investigate in this section the relation between qc and D
resulting from some basic growth mechanisms and connect
it with equation (4).

Let us analyze the behavior of the entropies Sq under
a rescaling transformation of an arbitrary probability den-
sity ρ(x), being x a point in a D-dimensional space [23].
The entropy of the rescaled function ρσ(x) = ρ(x/σ)/σD,
where σ is a linear length, becomes

Sq(σ) =
σ(1−q)D

(
(1 − q)Sq(1) + 1

)
− 1

1 − q
. (5)

As σ → ∞, the distribution broadens and the entropy
grows due to the loss of order. If the scaling or stretching
parameter increases exponentially with time, linear en-
tropy increase occurs for q = 1. If the scaling parameter
follows the law σ ∼ tγ/2 with γ > 0, then the generalized
entropies increase with time as follows: For q < 1, they
scale with time as Sq(t) ∼ t(1−q)Dγ/2, Sq(t) ∼ ln t in the
marginal case q = 1, and for q > 1, saturation occurs at
Sq(∞) = 1/(q − 1). Hence a linear increase is achieved in
the regime q < 1 for

qc = 1 − 2
γD

. (6)

As a relevant particular case let us mention the
isotropic normal diffusive spreading of a D-dimensional

Gaussian distribution where the stretching parameter is
σ2(t) = 2Qt, with Q the positive diffusion constant. In
this case γ = 1 then qc = 1− 2/D. The general case given
by equation (6) may be due to anomalous diffusive mo-
tion. A still simpler example of rescaling transformation
that will be useful later consists in a density being non-null
and uniform inside a D-dimensional hypersphere and zero
outside, such that the radius σ(t) grows as σ ∼ tγ/2. No-
tice that the expression for qc of the growing LLV droplet,
given by equation (4), is obtained when the temporal vari-
ation of the scaling length σ is ballistic (γ = 2).

Now, let us consider another simple process. M 
 N
windows cover a lattice, like for the LLV in the previous
Section, with probabilities

(p1, p2, . . . , pN , 0, 0, . . . , 0
︸ ︷︷ ︸

M−N

),
∑

1≤i≤N

pi = 1.

Imagine that windows with non-null probability are repli-
cated by an integer factor m such that the new set of
probabilities is

( p1

m
, . . . ,

p1

m︸ ︷︷ ︸
m

,
p2

m
, . . . ,

p2

m︸ ︷︷ ︸
m

, . . . ,
pN

m
, . . . ,

pN

m︸ ︷︷ ︸
m

, 0, 0, . . . , 0
︸ ︷︷ ︸

M−mN

)
.

If the replication factor is m ∼ σD (where σ is a typical
linear size of the D-dimensional system) and additionally
if σ ∼ tγ/2, then the entropy will be produced in such a
way that a growth linear in time occurs for qc given by
equation (6). In fact, if a continuous distribution is dis-
cretized, the associated rescaling process can be thought
as a particular case of the replication one here consid-
ered, a special case where replicas are spatially ordered.
Nevertheless, the entropy does not depend on the spatial
localization of the windows.

Summarizing, while for an ordinary exponential
growth process, the standard entropy S1 increases linearly
with t; for a process where growth follows a power-law in
time, Sq has the property of finite asymptotic entropy rate
for some q = qc �= 1. This value of the entropic index can
result from simple transformations and therefore may be
trivially related to the lattice dimensionality. These ideas
lead us to review the results of the precedent section to
see whether simple mechanisms are also lurking there.

5 Some details of the LLV dynamics

Let us inspect first the roughness of the interface because
the reaction rate and therefore the dynamics of the prop-
agating front are related to that quantity. Since we are
interested in the interface, one can perform numerical sim-
ulations considering just two species. Hence we follow the
evolution of an initial nucleus containing only A1 parti-
cles dropped over a background of A3. Its propagation is
like in the LLV case where a forefront of A1 particles gov-
erns the spreading of the droplet. Since the reaction rate
must be proportional to the “extent” of the interface, we
measure Ns, the number of reactive sites constituting the
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Fig. 4. Propagation of a droplet of A1 in a lattice filled
with A3, for different values of D indicated in the figure. (a) Re-
activity r as a function of time for the two-species LLV (full
lines); for comparison, r for a regularly filled hypersphere with
the same total number of cells as the corresponding LLV nu-
cleus is also plotted (dotted lines). (b) Total number of sites
n1 occupied by A1 vs. time. The initial nucleus has linear
size λ = 4.

interface, and Nf , the total number of reactive faces in
interfacial sites. Reactive faces are those separating two
nearest neighboring sites occupied by different species. A
suitable quantity for our growth process is

r =
Nf

cNs
, (7)

where c is the connectivity, i.e, the number of first nearest
neighbors per site (c = 2D in hypercubic lattices). The
quantity r represents an averaged measure of the degree
of reactivity of an interfacial site, and must be also con-
nected to the roughness of the interface. The reactivity r is
plotted in Figure 4a as a function of time. It soon reaches
a stationary value within small fluctuations. For compar-
ison, the figure also exhibits the value of r for a regularly
filled hypersphere with the same total number of cells as
in the LLV nucleus at each given t. The higher the lattice
dimensionality, the larger the relative difference between
the values of r for the two models. The roughness of the
propagation front in the 1D dynamics has been studied in
detail by Provata and Tsekouras [21]. Also in this case,
it was shown that after a brief transient the rough profile
remains stable in average.

If the reactivity remains constant in time, the front
moves at constant radial speed: R(t) = R(0) + v t, where
R is an effective radius R ∝ n

1/D
1 and the velocity v ≡ v(r)

an increasing function of its argument for a given D. Al-
though the fractal properties of the interface are embod-
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Fig. 5. Time evolution of the number of cells n1 and n2 occu-
pied by species A1 (a) and A2 (b), respectively, for the values
of the lattice dimensionality indicated in the figure and for var-
ious lattice sizes L: 150 and 200 (D = 2), 100 and 150 (D = 3),
and 60 and 100 (D = 4), represented by dotted and full lines
respectively. Time is measured in MCS. Curves correspond to
single runs. The initial droplet size is λ = 6 for D = 2 and
λ = 4 for D = 3, 4.

ied in the velocity, if the roughness soon reaches its steady
value, then fractality does not affect the temporal law of
the front propagation. In effect, the linear dependence of
R with time is observed in numerical experiments (see
Fig. 4b). Therefore, following the considerations of the
precedent section, equation (6) with γ = 2 must clearly
hold in this binary case.

In the three-species case, although the reaction scheme
is cyclic, symmetry is broken by the initial condition.
Species A3 plays the special role of a background what
in turn makes A1 play the special role of the forefront
species. After a short transient and before the limits of
the lattice are reached by the nucleus, the stationarity of
the interface reactivity r leads to a linear growth of the ef-
fective radius with time, as in the two species case. Conse-
quently, the total number of cells in the nucleus, protected
by the most external ring constituted by A1 cells, will in-
crease as tD. Behind the first ring, the three species are
equivalent, then the total number of cells occupied by each
species in the nucleus is expected to increase with the same
law tD too. In fact, this behavior is observed in numeri-
cal simulations, as shown in Figure 5, although species A1

yields a slightly larger slope than A2. Linear growth im-
plies a regime where the concentrations in the nucleus are
conserved. When full occupation of the lattice is attained,
the concentration of each species ci = ni/LD (i = 1, . . . , 3)
fluctuates around the stable center predicted by the mean-
field theory: ci = ki/

∑
j kj = 1/3, for all i [20].
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We have seen that the production of the species in
the nucleus is such that after a short transient their con-
centrations remain approximately constant. Thus, in the
extreme case when windows have the size of a cell (l = 1),
a linear increase of Sq with time occurs clearly for q
given by equation (4). In fact there will be n1 windows
with non-null probability 1/n1, where n1(t) ∼ tD, then
Sq(t) = (n1−q

1 −1)/(1−q), so that: Sq ∼ t, if (1−q)D = 1.
In the opposite extreme where windows are so large that
all non-empty windows have approximately the same oc-
cupation number, that same temporal dependence is ob-
tained too.

Let us analyze what happens for intermediate window
sizes. Clusters of cells of each species like in fully occupied
lattices [12,19] appear in the interior of the nucleus. It is
not counterintuitive the idea that as the volume of the
nucleus is increasing, the size distribution of the agglom-
erates becomes stationary after a transient. To test this
idea one can calculate for instance the occupation num-
bers of the windows, intimately related to entropy com-
putation, and see how their distribution evolves in time.
Figure 6 exhibits the number of windows Ω(i) occupied
by at most i cells of species A1 (1 ≤ i ≤ lD), for dif-
ferent time instants. The occupation number for i = 0 is
dismissed whereas it does not contribute to the entropy
and a cumulative probability is considered in order to get
smoother curves. Notice that the curves in the log-linear
plot are practically parallel, indicating that they differ in a
multiplicative factor. Moreover, the replication factor in-
creases following the law tD as illustrated in the inset of
Figure 6 and in accord with previous considerations. All
this means that a replication of the windows as described
in Section 4 with γ = 2 is going on.

In conclusion, the analysis of both interfacial and bulk
contributions to the growth process shows that, although
the underlying dynamics is complex, once the proper-
ties of spatial structures attain steady values, growth is
controlled by simple laws. More explicitly, the resulting
growth processes are power-law in time with scaling ex-
ponents trivially related to the lattice dimensionality since
σ ∼ t (corresponding to γ = 2). Then, the linear increase
of Sq with time for qc given by equation (4) is expected
for arbitrary D.

6 Final remarks

In this paper we have employed the criterion of finite
asymptotic growth rate of Sq to determine qc in the
D-dimensional LLV. We verified for D = 3 and D = 4
a conjecture for the connection between qc and D pre-
viously proposed [12], namely, qc = 1 − 1/D. Moreover
we detected the mechanisms leading to such relation for
generic D.

The box-counting method applied to the 2D LLV [19]
has previously shown that the boundaries of the small
domains of a given species are approximately fractal [19]
with a fractal dimension df that depends on the reaction
rates ki. Analogous results are expected in higher dimen-
sions. We have seen that, for the present model and for the
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Fig. 6. Cumulative distribution of occupation numbers at dif-
ferent times (in MCS) indicated in the figure for D = 2 (a)
and D = 3 (b). Ω(i) is the number of windows occupied by
less than i cells of species A1 (1 ≤ i ≤ lD). In all cases, the
window edges have length l = 4. For D = 2, (L, λ) = (200, 6),
and for D = 3, (L, λ) = (148, 4). Insets: multiplication factor
Ω̄t/Ω̄tmax as a function of time (in MCS), where the horizon-
tal bars mean average over all the occupation numbers at a
given t, and tmax = 160 (a), 120 (b).

particular probability assignment considered, Sq entropy
production does not capture directly the fractality of spa-
tial patterns. Of course, since the fractal dimension df

must depend on the lattice spatial dimension D, the char-
acteristic entropic index qc (a function of D) results in
some way connected to df . But qc is not determined by
the degree of fractality, it is only determined by D, in-
dependently of the nature (fractal or not) of the growing
core. This is so because the properties of spatial patterns,
such as the interface roughness, soon reach steady values.

In a process where the number of occupied cells in-
creases exponentially with time t, the usual BGS en-
tropy S1 increases linearly with t. For a growth process
that is not exponential, one can not expect a linear in-
crease of the standard entropy S1. Particularly, if growth
occurs following a power-law in time, Sq has the property
of finite production rate for some q = qc �= 1, as shown in
Section 4. Then qc �= 1 is the expected outcome, not neces-
sarily connected to the complex features of a system. This
is what we observe in the present study where qc is triv-
ially related to the lattice dimensionality and, therefore,
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it does not furnish significant information on the dynam-
ics. However, qc may be non-trivial in other instances. An
example is the Feigenbaum attractor, cited in the Intro-
duction. In that case, a suitably chosen small segment σ
of initial conditions grows following the law σ ∼ tγ/2 (sen-
sitivity to initial conditions), where γ ≡ 2/(1 − qc) with
qc = 0.2445 . . . [8], yielding a finite rate of Sqc , in accord
with the considerations made in Section 4. The entropic
index qc was shown to be a relevant quantity related to
the geometry of the multifractal attractor [3].

We have seen that the stationarity of certain prop-
erties of the LLV dynamics determines a growth process
linear in time (γ = 2), yielding relation (4). As perspec-
tives, one can not exclude the possibility that in other
dynamical regimes of the LLV, the increase of Sq can re-
flect complex features. Also, it could be insightful to re-
view previous works in the literature by taking into con-
sideration the present results. This might be especially
fruitful in cases where characteristic indexes of the form
qc = 1 − 2/(γD) have also been found, as in the interest-
ing study of Galilean-invariant lattice Boltzmann models
of fluids [11].

I am very grateful to Fulvio Baldovin and Constantino Tsal-
lis for interesting and fruitful discussions. I also thank Astero
Provata for useful comments on the LLV. This work was par-
tially supported by Brazilian agencies FAPERJ and PRONEX.
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